

Improving domestic avocado quality to lift Australian consumer confidence

Ainsworth NJ, ; Agnew JR.

Queensland Department of Agriculture and Fisheries, Australia

In this presentation...

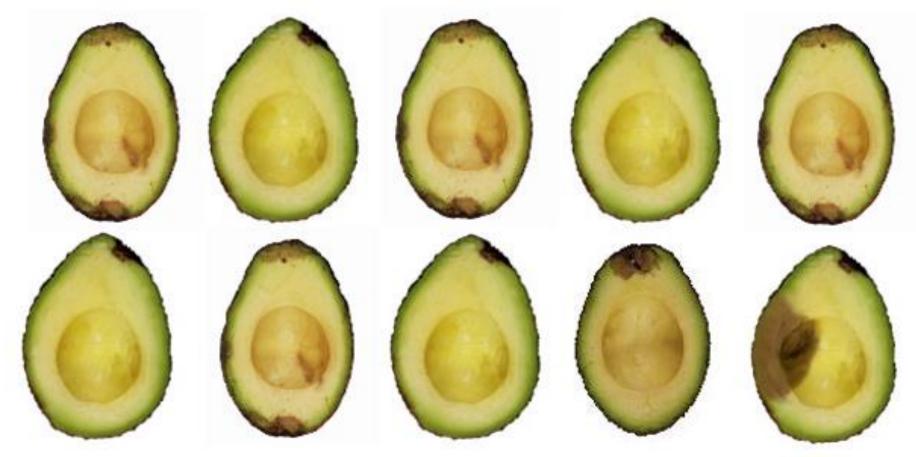
Sampling

The findings

What changes industry made

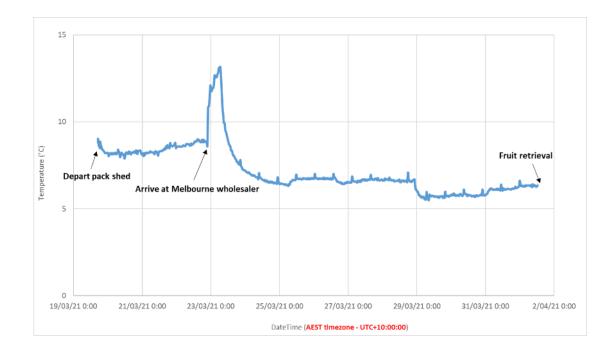

Rot prevention strategies

Time for questions

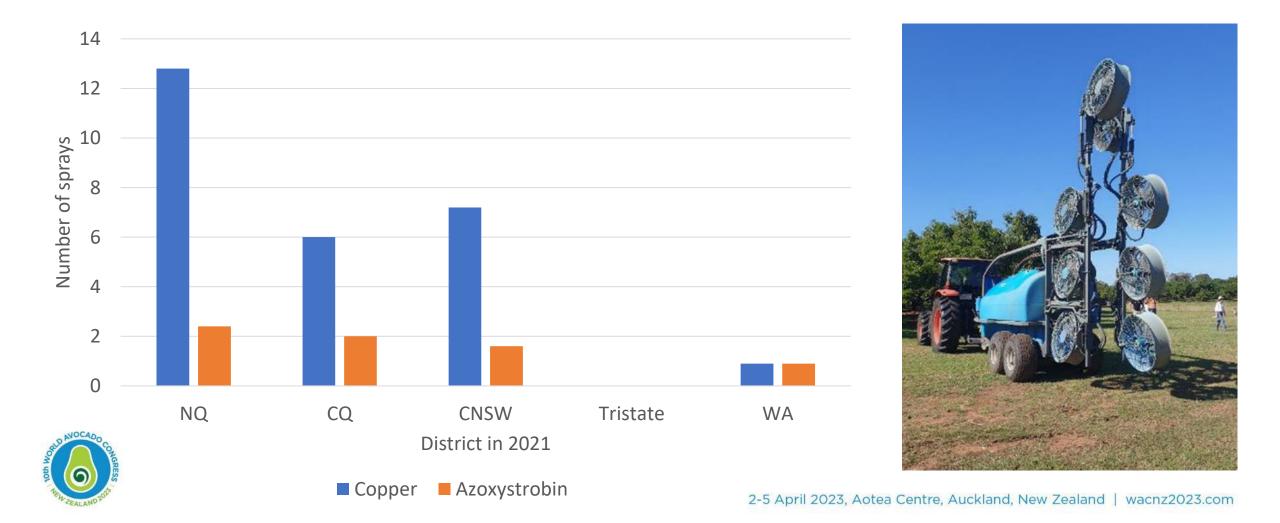


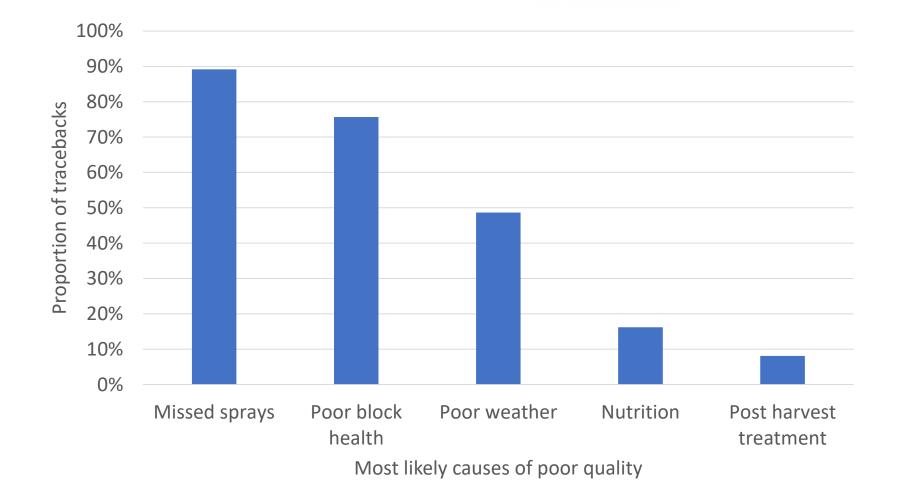
179 supply chains monitored over 4 years

What is the Aus quality standard?


90% or more of fruit must have <10% damage

Fruit quality reports to pack sheds

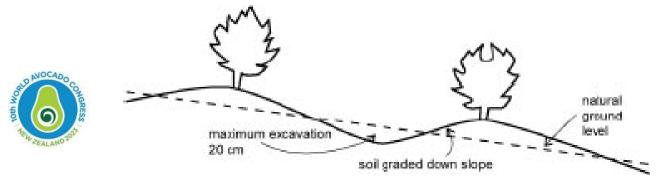

Form Update	ed: 24th July	2020																	
Grower or	packer na	me and ad	dress		-														
Batch num	ber				Batch 1														
Packed on	date				18/03/2021														
Assessor					Terry Rudge														
Fruit retrie	val from i	ipener (dat	te and time	.)	1/04/2021														
Assessmer	nt date				4/04/2021														
Other com	ments				Assessed at th	e point wh	ere fruit w	as about to	decay rapi	dly. Many	pieces had	rots in the	skin that h	ad not qui	te penetrat	ed the			
					flesh. SER whe														
Fruit No.	NIR dry	Turoni		External assessment				1	Internal assessment										í.
	matter (av of 2	firmness	For >5% of fruit surface					Stem End							Diffuse	Other			
			Nodule	Physical	Sunburn	Chilling	Other	Rot (%)	0%	1-5% of	6-10%	11-15%	16-20%	>20%	browning	discolour	specify	А	Rot
	readings)	readings)	damage	damage		injury	specify		Perfect	flesh				specify	-	ation		record	serverity
e.g.	27	46	Y					5%						30%				TRUE	35.09
1	24.3	26.1							Yes									TRUE	0.09
2	25.1	21.5							Yes									TRUE	0.09
3	23.2	26.2								Rot								TRUE	3.09
4	25.0	34.1							Yes									TRUE	0.09
5	23.8	31.1							Yes									TRUE	0.09
6	24.4	30.7						1%										TRUE	1.09
7	23.3	28.0								Rot								TRUE	3.09
8	25.7	33.6								Rot								TRUE	3.09
9	23.7	22.9									Rot							TRUE	8.09
10	24.7	29.9									Rot							TRUE	8.09
11	24.4	30.5															Stings	TRUE	0.09
12	25.4	28.1							Yes									TRUE	0.09
13	27.1	28.0	Y						Yes									TRUE	0.09
14	23.9	25.0															BSR	TRUE	0.09
15	24.2	32.0							Yes									TRUE	0.09
16	24.8	29.5							Yes									TRUE	0.09
17	24.0	31.0								Rot								TRUE	3.09
18	26.6	20.2							Yes									TRUE	0.09
19	23.3	31.2						1%		Rot								TRUE	4.09
20	24.0	26.5							Yes									TRUE	0.09
21																		FALSE	0.09
22																		FALSE	0.09
Average	24.5363	28.305																	1.7%



Variability in grower practices

Root cause analysis using tracebacks

Those supply chains not meeting the industry standard were investigated using tracebacks


What can growers do about this?

lssue	Best practice within your control					
Missed	Plan when coppers and azoxystrobins are likely to be needed					
sprays	each year, but then refine the timing around the weather					
	Monitor rainfall probabilities daily to time your sprays					
	Ensure flexibility in staffing to be able to spray when needed					
	Have machinery that can spray the whole orchard on short					
	notice					
	Ensure sprayer coverage (for each block with different tree size					
	and shapes) and sprayer calibration is checked at least annually					

What can growers do about this?

lssue	Best practice within your control
Poor block health	Plan a program of Phytophthora treatment
	Use mulch
	Mound rows and select suitably drained soils
	Ensure good irrigation management
Poor weather	Ensure good farm layout for drainage
Nutrition	Plan amounts and timing of application of N, Ca and other nutrients
	Monitor leaf, soil and fruit analysis results
Post harvest treatment	Use the best available postharvest fungicide or treatment

2-5 April 2023, Aotea Centre, Auckland, New Zealand | wacnz2023.com

What changes industry actually made

- Spray programs and equipment set-up
- Tree health / phytophthora
- Postharvest fungicides and their application
- Fertiliser programs
- Monitoring the pack-shed departure temperatures
- Better feedback on the quality reaching the consumer
- Exporters more aware of fruit quality risk

Rot prevention strategies

Risk factors

Orchard environment /rain (affected by production district)

Fruit robustness

Tree habit

Temperatures & rain at harvest

Evenness of ripening

Risk management / mitigation

Spray program and coverage (copper & azoxystrobin e.g. Amistar®)

Tree age, health & nutrition (N:Ca)

Canopy management

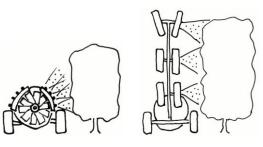
Handling & postharvest treatment (Graduate A+™ or Sportak®)

Managed fruit maturity (DM). temperatures, ripening & fruit age

Incidence, severity and speed of appearance

Some video resources

Fruit assessment


https://www.youtube.com/watch?v=Pk-yzYzzrjA

Sprayer selection

https://www.youtube.com/watch?v=CgblcOGgpXU

Spray coverage https://www.youtube.com/watch?v=tkKBJFZUy1k

Sprayer calibration https://www.youtube.com/watch?v=QZSCRICImW0

CALIBRATION FORMULA

Calibration volume (L) = Actual (L) applied in the 100 m calibration area Row width (m) = Row width (m) in calibration area

Volume applied in L/ha = Calibration volume (L) $\times \begin{bmatrix} 10,000 \\ 100 \times \text{Row width (m)} \end{bmatrix}$

S.com

Contact details and acknowledgement

Noel Ainsworth, Ph +61 409 003 909John Agnew, Ph +61 436 849 357noel.ainsworth@daf.qld.gov.aujohn.agnew@daf.qld.gov.au

The AV18000 project has been funded by Hort Innovation, using avocado research and development levy, co-investment from the Queensland Department of Agriculture and Fisheries, Western Australian Department of Primary Industries and Regional Development, and contributions from the Australian Government. Key project delivery partners also include Avocados Australia and Rudge Produce Systems.

Hort

trategic levy investment

Queensland Government Australia

Department of Primary Industries and Regional Development

Questions

Thanks to our sponsors and partners:

10th WORLD **AVOCADO CONGRESS New Zealand** 2023 New Zealand