

Characterization of the respiration rate of avocados exported from different countries and its relationship with carbon dioxide

Danilo Arellano González

Head of technical and R&D departament darellano@liventusglobal.com

Controlled atmosphere for containers during maritime transit

Shipment tracking platform

Bag technology to controlweightlossanddehydration.Controlledatmosphere compatible

Identification and solution of problems along the postharvest chain

How works our technology?

- Valve opening in the controller. We can maintain a certain set point due to the natural respiratory rate of avocados.
- > We measure gas concentration, valve openings, and return temperature throughout the entire transit in all of our services.

What we can do with this information?...

Development of a regression model to establish respiratory rate (RT)

> Valve opening as KPI to determine respiratory

 $Valve opening \left(\frac{Valve opening}{h}\right) \longrightarrow Respiration rate \left(\frac{ml CO2}{kg h}\right)$

R² : 0.99 F critical value : 0.0108

Assumptions:

- Free volume in the container
- ➢ Kg of fruit per container

Limitations:

- Liventus Setpoint
- Only consider the variables measured by the controller

Research methodology

2500 services considered for the study

Universe of data from 2019-2022 from our commercial shipping database from Chile, Mexico, Colombia, Perú and South Africa.

Objectives:

- 1. Determine differences in respiratory rate among different countries.
- 2. Verify the effect of CO_2 as a regulator of respiratory rate.

A general and mixed linear model analysis was performed. Comparisons with LSD-Fisher's test with a significance level of 5%. Multivariate analysis:

- Cluster analysis
- Principal Component Analysis (PCA)

Model scopes: Respiratory rate between 3 to 13 ml $CO_2/kg h$

Results

Differences between countries

Cluster analysis

How can we regulate the respiratory rate?

To arrive with green and firm fruit...

Carbon dioxide effect on respiration rate

The effect of modified atmospheres on the rate of quality change in 'Hass' avocado

Maarten L.A.T.M. Hertog *, Sue E. Nicholson, Kerry Whitmore 1, 2003

Carbon dioxide effect on respiration rate

Liventus INNOVATING TO PRESERVE

There is a clear relation between CO2 concentration and respiratory rate.

What are the differences between countries?

Too many

What are the differences between countries?

Too many

Production altitude

Different climates

Fruit size

Different destination countries

Condition issues

Managment

Different percentage of dry matter at harvest

The objective is not to predict or study a response variable, but to study the correlation between variables.

- ✓ Indirect relationship between CO2 respectively and respiratory rate
- Transit time does not seem to be a component that explains the behavior of these variables.
- ✓ Temperature management does not present a greater relationship with respiratory rate

Temperature largely defines the respiratory rate of fruit and vegetable products. Kader, 2014.

- Behavior of variables similar to Chile
- ✓ Greater sensitivity to CO2 modification
- ✓ Quick win: CO2 increase for respiratory rate decrease

Perú

- ✓ The relationship between CO2 and respiratory rate, but decreases.
- Increased importance and negative correlation with transit time- weird
- ✓ Less correlation with variables studied in general
- ✓ Other variables not studied:
- Mean dry matter**
- Heterogeneity **
- Other Condition issues

South Africa

Higher correlation with temperature

Quick win possibility for the industry?

- Inadequate set point
- Possibility of improving stowage
- Dry matter

Mexico

- Behavior of variables similar to Chile
- ✓ Greater sensitivity to CO2 modification
- ✓ Relation with CO2 and transit time (?)

- ✓ Increase the percentage of CO2 is a important strategy to decrease the respiratory
- ✓ It is possible to categorize different avocado exporting countries based on their respiratory metabolism.
- Each country has different considerations from a logistics point of view, quality, condition and raw material. The recommendation must be specific.

✓ How does the respiratory rate vary during transit?

✓What effect does the different concentrations of CO2 have during maturation?

✓ Even more specialized recommendations

Thanks you!

Technical division

Danilo Arellano (Head of technical and R&D department) darellano@liventusglobal.com

Comercial division Germán Sims (Global comercial manager) gsims@liventusglobal.com

https://www.liventusglobal.com

liventusglobal.com

Characterization of the respiration rate of avocados exported from different countries and its relationship with carbon dioxide

Danilo Arellano González

Head of technical and R&D departament darellano@liventusglobal.com

