

Surveillance for avocado sunblotch viroid utilizing the European honey bee

By John M.K. Roberts, Anna E. C. Jooste, Lara-Simone Pretorius and Andrew D.W. Geering*

*Presenting author: The University of Queensland

Avocado sunblotch viroid (ASBVd)

- □ Circular, single-stranded RNA molecule, 247 nt.
- □ Adopts a rod-shaped secondary structure in planta
- □ Natural host range is limited to avocado.
- □ Seed-transmitted, no vectors, mechanically transmissible.
- Reduces quantity and size of fruit and affects marketability through unsightly scarring on skin.
- Major trade impediment because of quarantine restrictions on fresh fruit.
- □ Very rare in Australia due to clean planting material scheme.

Costa Rica bans avocado imports from 9 countries

Surveillance for ASBVd

Evidence of pest-freedom required to facilitate trade.

Question: How can an orchard containing 30,000 trees, each 10 x 5 m in size, be rapidly and inexpensively surveyed for ASBVd?

Potential solution: Bee-assisted surveillance!

- □ ASBVd is pollen-transmitted.
- □ Bee hives brought in to boost pollination.
- ASBVd is a very resilient molecule in the environment.
- Worker bees forage on thousands of flowers and store pollen in hive.

Leaf stored at room temp for 4 weeks and still strongly positive (Ct = 17.6)

Methods

- Study done in Australia and South Africa, but only Australian results presented here.
- Block of avocados containing 343 trees, including a tight clump of four infected trees.
- □ Bee hives at *c*. 100, 200, 300 and 400 m distance from infected trees.
- Sampling done at end of avocado flowering period 28 Sep 2020.
- □ Worker bees collected from flowers on infected tree.
- □ Worker bees and pollen samples collected from hives.
- Diagnosis done using three methods:
 - RT-qPCR using TaqmanTM probe.
 - Illumina sequencing of ribo-depleted total RNA and small RNA (21-22 nt) – *de novo* assemblies and mapping of reads to reference genomes (CLC Genomics Workbench v20).

Arrangement of hives (QLD1-4) relative to clump of four infected trees (red dot)

Methods

Identification of most common plant species represented

in hive pollen (# sequence contigs)

Plant species (closest match)	QLD1 hive	QLD2 hive	QLD3 hive	QLD4 hive
Eucalyptus grandis	4,143	3,638	3,672	2,927
Syzigium oleosum	701	220	557	562
Citrus spp.	440	227	638	8
Raphanus sativus	738	138	127	99
Rhodamnea argentea	396	82	276	284
Brassica spp.	31	136	13	48
Medicago truncatula	64	2	56	6
Camellia sinensis	47	0	6	0
Gossypium spp.	0	32	13	2
Cicer arietinum	19	2	21	4
Pyrus x bretschneideri	11	0	8	24

CRICOS code 00025B

.

RT-qPCR detection of ASBVd

High throughput sequencing (HTS) detection of ASBVd in hive samples

Sample name	Sample type	HTS type	Normalized sequence copy no.
QLDforagers	Forager bees on infected tree	RNA-seq	0.6
QLDforagers	Forager bees on infected tree	Small RNA-seq	289
QLD1	Hive bees	Small RNA-seq	0.3
QLD1	Hive pollen	Small RNA-seq	8.7
QLD2	Hive pollen	Small RNA-seq	0
QLD3	Hive pollen	Small RNA-seq	0
QLD4	Hive pollen	Small RNA-seq	0

Other viruses and viroids that were detected in hives

Virus/viroid	Family	% max nt identity	% genome	RNAseq		sRNA		
			coverage	Bees	Pollen	Bees	Pollen	
Persea americana alphaendornavirus 1**	Endornaviridae	99	99	\checkmark	\checkmark	\checkmark	\checkmark	<u>Status</u> **Exotic
Persea americana chrysovirus**	Chrysoviridae	99	98	\checkmark	\checkmark	\checkmark	\checkmark	*New for QLD
Pelargonium zonate spot virus	Bromoviridae	99	98	\checkmark	\checkmark	\checkmark	\checkmark	
Tomato ringspot virus**	Secoviridae	97	63	\checkmark	\checkmark			
Solanum nigrum ilarvirus**	Bromoviridae	99	16	\checkmark	\checkmark			
Peanut stunt virus**	Bromoviridae	99	78	\checkmark				
Turnip mosaic virus	Potyviridae	91	37	\checkmark				
Pear blister canker viroid*	Pospiviroidae	99	100	\checkmark				CRICOS code 00025B

- Bee-assisted surveillance is a valuable tool for determining ASBVd pest status of an avocado orchard.
- □ Stored pollen is the best sample type.
- Optimal when trees are no further than 100 m from any tree (normal stocking rate is 2-3 hives/ha).
- Multi-purpose surveillance method plant and bee viruses, viroids, maybe fungi, and varroa mites.
- Biased surveillance method.
 - Plants must be flowering at the time of sample collection.
 - Bees prefer some flowers over others and you can't dictate where they go!
 - Favours pollen-transmitted viruses/viroids and high titre mechanically transmissible viruses (e.g. ilarviruses, sobemoviruses and tobamoviruses).

□ Best done by specialists!

Dr Andrew Geering Associate Professor Queensland Alliance for Agriculture and Food Innovation a.geering@uq.edu.au 07 3443 2459

🔽 @QAAFI

f

facebook.com/QAAFIatUQ

in linkedin.com/company/QAAFI

Hort Innovation Strategic levy investment

This project has been funded by Hort Innovation, using the avocado research and development levy and contributions from the Australian Government under Project AV18007 – Avocado sunblotch viroid survey.

The Queensland Alliance for Agriculture and Food Innovation (QAAFI) is a research institute of The University of Queensland (UQ), supported by the Queensland Government.

CRICOS code 00025B

