

Avocado sunblotch disease

A healthy tree....or not?

High % transmission from the seed of symptomless carrier trees Budwood taken from symptomless carrier trees will spread the disease

> Pollinators from infected trees can infect healthy trees...but only the pollinated embryo will bear a symptomatic fruit.

A healthy tree....or not?

ASBVd-infected trees

Symptomatic trees

- Recognisable
- Uneven distribution in a tree
- Easier to manage
- 15 to 30% yield reduction

Asymptomatic trees

- Appear as healthy
- Even distribution in a tree
- Challenging to manage
- 50% to 80% yield reductions

Asymptomatic tree

ARC • LNR Excitation in Research and Development

Symptomatic tree

www.wac2027.com

Avocado sunblotch viroid: the challenge of symptomless carrier trees in disease management

Z.R. Zwane and <u>A.E.C. Jooste</u>

ARC-Tropical and Subtropical Crops, Mbombela, South Africa

10th World Avocado Congress Auckland, New Zealand 5 April 2023

Research questions

What is the impact of ASBVd-infected symptomless carrier trees on tree morphology, fruit maturity, yield and quality of 'Hass' avocado ?

What management strategies should be in place to contain the spread of ASBVd in orchards?

Impact of ASBVd infection in asymptomatic trees compared with healthy trees

- Orchard selection and field selection of trees
- Seasonal monitoring of trees flowering and fruit set stages
- Effect on fruit ripening, internal and external qualities of fruit
- Yield

Flowering

Healthy

Infected

Symptomless tree: Abnormal heavy flowering and flower abscission at the end of flowering stage

Fruit set

External quality of fruit

- Skin spotting
- Discrete patches
- External rots
- Shrivel

External quality of fruit

Direct ripening		
Infection level	External rot (%)	Shrivel (0-3)
Healthy	4.2 ± 2.9 b	0.54 ± 0.52 a
Low	28.3 ± 20.2 a	1.3 ± 0.58 a
Medium	27 ± 14.4 a	1.4 ± 1.08 a
High	30.8 ± 15.9 a	1.5 ± 1 a
P value	<0.001	0.06
F value	10.2	2.938
Stored fruit		
Infection level	External rot (%)	Shrivel (0-3)
Healthy	0 ± 0 a	0 ± 0 a
Low	0 ± 0 a	0 ± 0 a
Medium	0 ± 0a	0 ± 0 a
High	5 ± 4.5 b	1 ± 0.63 b
P value	<0.001	<0.001
F value	8.944	17.89

Direct ripening

Healthy

Infected

Ripens quicker

More susceptible to external rots

Cold storage

Healthy

Infected

Early softening and color change (p ≤ 0.05)

ARC • LNR

Internal quality of fruit

- Flesh bruising
- Diffuse flesh discolouration
- Vascular browning
- Stem end rot
- Body rots

Direct ripening

Healthy

Infected

Bruising $(p \le 0.05)$ Diffuse flesh coloration 20.5% higher $(p \le 0.05)$ Stem end rots 17.1% higher $(p \le 0.05)$

Cold storage

Healthy

TOA 1

Infected

Yield loss

ARC • LNR

What did we learn?

- Field observations associated with ASBVd infection can be an indication of infection in 'Hass' trees
- Fruit from infected trees ripened faster than normal fruit and were more prone to fungal infections during the ripening process
- ASBVd affected the firmness and colour change of fruit
- To manage the symptomless trees in orchards are critical to prevent yield losses in the long term

Management strategies

Controllable strategies

- Disease status of seed sources
- Disease status of scion material
- Orchard sanitation practices
- Source trees from certified nurseries
- Regular scouting of orchards
- Systematic molecular testing of orchards
- Removal of infected material

Influence from external factors

- Impact of honeybees/pollinators
- Infection through roots of adjacent plants
- Human error

Acknowledgements

- Growers for assistance with field work and access to orchards for the impact study.
- Pathology team at ARC
- SAAGA for funding

www.wac2027.com